logo

Home | News Update | English Language | Mathematics | Physics | Biology | Geography | Forum | About Us
Fast & Easy Contact??
08080092411 || Coming soon..

     

Mathematics_pictures
think
lenght
learn
Maths Literacy - Ratios and Percentages
Sequences and series
estimating surds
factorisation
logarithms
rounding off
simplification of fractions
solving quadratic equations
word problems
standard form

DEFINITION ,HISTORY AND FACTS ABOUT THE EARTH
Edu what is earth 0
Earth is our home planet. Scientists believe Earth and its moon formed around the same time as the rest of the solar system. They think that was about 4.5 billion years ago. Earth is the fifth-largest planet in the solar system. Its diameter is about 8,000 miles. And Earth is the third-closest planet to the sun. Its average distance from the sun is about 93 million miles. Only Mercury and Venus are closer.

Earth has been called the "Goldilocks planet." In the story of "Goldilocks and the Three Bears," a little girl named Goldilocks liked everything just right. Her porridge couldn't be too hot or too cold. And her bed couldn't be too hard or too soft. On Earth, everything is just right for life to exist. It's warm, but not too warm. And it has water, but not too much water.

Earth is the only planet known to have large amounts of liquid water. Liquid water is essential for life. Earth is the only planet where life is known to exist.

WHAT DOES EARTH LOOK LIKE?
Earth now
Earth now two
From space, Earth looks like a blue marble with white swirls and areas of brown, yellow, green and white. The blue is water, which covers about 71 percent of Earth's surface. The white swirls are clouds. The areas of brown, yellow and green are land. And the areas of white are ice and snow.

The equator is an imaginary circle that divides Earth into two halves. The northern half is called the Northern Hemisphere. The southern half is called the Southern Hemisphere. The northernmost point on Earth is called the North Pole. The southernmost point on Earth is called the South Pole.

How does Earth move?
Earth movement now on uzopedia
Earth orbits the sun once every 365 days, or one year. The shape of its orbit is not quite a perfect circle. It's more like an oval, which causes Earth's distance from the sun to vary during the year. Earth is nearest the sun, or at "perihelion," in January when it's about 91 million miles away. Earth is farthest from the sun, or at "aphelion," in July when it's about 95 million miles away.

At the equator, Earth spins at just over 1,000 miles per hour. Earth makes a full spin around its axis once every 24 hours, or one day. The axis is an imaginary line through the center of the planet from the North Pole to the South Pole. Rather than straight up and down, Earth's axis is tilted at an angle of 23.5 degrees.

Why do we have Day and Night?


Day and night
At all times, half of Earth is lighted by the sun and half is in darkness. Areas facing toward the sun experience daytime. Areas facing away from the sun experience nighttime. As the planet spins, most places on Earth cycle through day and night once every 24 hours. The North Pole and South Pole have continuous daylight or darkness depending on the time of year.

Why does earth have seasons?


Earth seasons on uzopedia follow us uzopedia
Earth has seasons because its axis is tilted. Thus, the sun's rays hit different parts of the planet more directly depending on the time of year.

From June to August, the sun's rays hit the Northern Hemisphere more directly than the Southern Hemisphere. The result is warm (summer) weather in the Northern Hemisphere and cold (winter) weather in the Southern Hemisphere.

From December to February, the sun's rays hit the Northern Hemisphere less directly than the Southern Hemisphere. The result is cold (winter) weather in the Northern Hemisphere and warm (summer) weather in the Southern Hemisphere.

From September to November, the sun shines equally on both hemispheres. The result is fall in the Northern Hemisphere and spring in the Southern Hemisphere.

The sun also shines equally on both hemispheres from March to May. The result is spring in the Northern Hemisphere and fall in the Southern Hemisphere.

What Are Earth's Different Parts?
Earth cutbk sm
Earth consists of land, air, water and life. The land contains mountains, valleys and flat areas. The air is made up of different gases, mainly nitrogen and oxygen. The water includes oceans, lakes, rivers, streams, rain, snow and ice. Life consists of people, animals and plants. There are millions of species, or kinds of life, on Earth. Their sizes range from very tiny to very large.

Below Earth's surface are layers of rock and metal. Temperatures increase with depth, all the way to about 12,000 degrees Fahrenheit at Earth's inner core.

Earth's parts once were seen as largely separate from each other. But now they are viewed together as the "Earth system." Each part connects to and affects each of the other parts. For example:

1. Clouds in the air drop rain and snow on land.

2. Water gives life to plants and animals.

3. Volcanoes on land send gas and dust into the air.

4. People breathe air and drink water.


Earth system science is the study of interactions between and among Earth's different parts.

Below is the history of the earth..
Provided by the #uzopedia team!
ENJOY!

History and deep study of the Earth
Earth is the only planet whose English name does not derive from Greek/Roman mythology. The name derives from Old English and Germanic. There are, of course, hundreds of other names for the planet in other languages. In Roman Mythology, the goddess of the Earth was Tellus - the fertile soil (Greek: Gaia, terra mater - Mother Earth).

It was not until the time of Copernicus (the sixteenth century) that it was understood that the Earth is just another planet.

Earth, of course, can be studied without the aid of spacecraft. Nevertheless it was not until the twentieth century that we had maps of the entire planet. Pictures of the planet taken from space are of considerable importance; for example, they are an enormous help in weather prediction and especially in tracking and predicting hurricanes. And they are extraordinarily beautiful.

The Earth is divided into several layers which have distinct chemical and seismic properties (depths in km):

0- 40 Crust
40- 400 Upper mantle
400- 650 Transition region
650-2700 Lower mantle
2700-2890 D'' layer
2890-5150 Outer core
5150-6378 Inner core

The crust varies considerably in thickness, it is thinner under the oceans, thicker under the continents. The inner core and crust are solid; the outer core and mantle layers are plastic or semi-fluid. The various layers are separated by discontinuities which are evident in seismic data; the best known of these is the Mohorovicic discontinuity between the crust and upper mantle.

Most of the mass of the Earth is in the mantle, most of the rest in the core; the part we inhabit is a tiny fraction of the whole (values below x10^24 kilograms):

atmosphere = 0.0000051
oceans = 0.0014
crust = 0.026
mantle = 4.043
outer core = 1.835
inner core = 0.09675


The core is probably composed mostly of iron (or nickel/iron) though it is possible that some lighter elements may be present, too. Temperatures at the center of the core may be as high as 7500 K, hotter than the surface of the Sun. The lower mantle is probably mostly silicon, magnesium and oxygen with some iron, calcium and aluminum. The upper mantle is mostly olivene and pyroxene (iron/magnesium silicates), calcium and aluminum. We know most of this only from seismic techniques; samples from the upper mantle arrive at the surface as lava from volcanoes but the majority of the Earth is inaccessible. The crust is primarily quartz (silicon dioxide) and other silicates like feldspar. Taken as a whole, the Earth's chemical composition (by mass) is:


34.6% Iron
29.5% Oxygen
15.2% Silicon
12.7% Magnesium
2.4% Nickel
1.9% Sulfur
0.05% Titanium

The Earth is the densest major body in the solar system.

The other terrestrial planets probably have similar structures and compositions with some differences: the Moon has at most a small core; Mercury has an extra large core (relative to its diameter); the mantles of Mars and the Moon are much thicker; the Moon and Mercury may not have chemically distinct crusts; Earth may be the only one with distinct inner and outer cores. Note, however, that our knowledge of planetary interiors is mostly theoretical even for the Earth.

Unlike the other terrestrial planets, Earth's crust is divided into several separate solid plates which float around independently on top of the hot mantle below. The theory that describes this is known as plate tectonics. It is characterized by two major processes: spreading and subduction. Spreading occurs when two plates move away from each other and new crust is created by upwelling magma from below. Subduction occurs when two plates collide and the edge of one dives beneath the other and ends up being destroyed in the mantle. There is also transverse motion at some plate boundaries (i.e. the San Andreas Fault in California) and collisions between continental plates (i.e. India/Eurasia). There are (at present) eight major plates:

Nº1. North American Plate - North America, western North Atlantic and Greenland .


Plates
Nº2. South American Plate - South America and western South Atlantic.

Nº3. Antarctic Plate - Antarctica and the "Southern Ocean"

Nº4. Eurasian Plate - eastern North Atlantic, Europe and Asia except for India

Nº5. African Plate - Africa, eastern South Atlantic and western Indian Ocean

Nº6. Indian-Australian Plate - India, Australia, New Zealand and most of Indian Ocean

Nº7. Nazca Plate - eastern Pacific Ocean adjacent to South America

Nº8. Pacific Plate - most of the Pacific Ocean (and the southern coast of California!)

There are also twenty or more small plates such as the Arabian, Cocos, and Philippine Plates. Earthquakes are much more common at the plate boundaries. Plotting their locations makes it easy to see the plate boundaries.

The Earth's surface is very young. In the relatively short (by astronomical standards) period of 500,000,000 years or so erosion and tectonic processes destroy and recreate most of the Earth's surface and thereby eliminate almost all traces of earlier geologic surface history (such as impact craters).

Thus the very early history of the Earth has mostly been erased. The Earth is 4.5 to 4.6 billion years old, but the oldest known rocks are about 4 billion years old and rocks older than 3 billion years are rare. The oldest fossils of living organisms are less than 3.9 billion years old. There is no record of the critical period when life was first getting started.

71 Percent of the Earth's surface is covered with water. Earth is the only planet on which water can exist in liquid form on the surface (though there may be liquid ethane or methane on Titan's surface and liquid water beneath the surface of Europa). Liquid water is, of course, essential for life as we know it. The heat capacity of the oceans is also very important in keeping the Earth's temperature relatively stable. Liquid water is also responsible for most of the erosion and weathering of the Earth's continents, a process unique in the solar system today (though it may have occurred on Mars in the past).

The Earth's atmosphere is 77% nitrogen, 21% oxygen, with traces of argon, carbon dioxide and water. There was probably a very much larger amount of carbon dioxide in the Earth's atmosphere when the Earth was first formed, but it has since been almost all incorporated into carbonate rocks and to a lesser extent dissolved into the oceans and consumed by living plants. Plate tectonics and biological processes now maintain a continual flow of carbon dioxide from the atmosphere to these various "sinks" and back again. The tiny amount of carbon dioxide resident in the atmosphere at any time is extremely important to the maintenance of the Earth's surface temperature via the greenhouse effect. The greenhouse effect raises the average surface temperature about 35 degrees C above what it would otherwise be (from a frigid -21 C to a comfortable +14 C); without it the oceans would freeze and life as we know it would be impossible. (Water vapor is also an important greenhouse gas.)

The presence of free oxygen is quite remarkable from a chemical point of view. Oxygen is a very reactive gas and under "normal" circumstances would quickly combine with other elements. The oxygen in Earth's atmosphere is produced and maintained by biological processes. Without life there would be no free oxygen.

The interaction of the Earth and the Moon slows the Earth's rotation by about 2 milliseconds per century. Current research indicates that about 900 million years ago there were 481 18-hour days in a year.

Earth has a modest magnetic field produced by electric currents in the outer core. The interaction of the solar wind, the Earth's magnetic field and the Earth's upper atmosphere causes the auroras (see the Interplanetary Medium). Irregularities in these factors cause the magnetic poles to move and even reverse relative to the surface; the geomagnetic north pole is currently located in northern Canada. (The "geomagnetic north pole" is the position on the Earth's surface directly above the south pole of the Earth's field.)

The Earth's magnetic field and its interaction with the solar wind also produce the Van Allen radiation belts, a pair of doughnut shaped rings of ionized gas (or plasma) trapped in orbit around the Earth. The outer belt stretches from 19,000 km in altitude to 41,000 km; the inner belt lies between 13,000 km and 7,600 km in altitude.

Latest Musics Updats
ping fast  my blog, website, or RSS feed for Free
Share Your Story With The World Part of Uzomedia site) site owned and manage by Uzomedia..

XtGem Forum catalog